
Using Constraint Programming to Solve the
Maximum Clique Problem

Jean-Charles Régin

ILOG Sophia Antipolis
Les Taissounières HB2,
1681 route des Dolines,
06560 Valbonne, France

regin@ilog.fr

Abstract. This paper aims to show that Constraint Programming can
be an efficient technique to solve a well-known combinatorial optimiza-
tion problem: the search for a maximum clique in a graph. A clique of a
graph G = (X, E) is a subset V of X, such that every two nodes in V are
joined by an edge of E. The maximum clique problem consists of find-
ing ω(G) the largest cardinality of a clique. We propose two new upper
bounds of ω(G) and a new strategy to guide the search for an optimal
solution. The interest of our approach is emphasized by the results we
obtain for the DIMACS Benchmarks. Seven instances are solved for the
first time and two better lower bounds for problems remaining open are
found. Moreover, we show that the CP method we propose gives good
results and quickly.

Introduction

Constraint Programming (CP) involves finding values for problem variables sub-
ject to constraints on which combinations are acceptable. One of the main prin-
ciples of CP is that every constraint is associated with a filtering algorithm
(also called a domain reduction algorithm) that removes some values that are
inconsistent with the constraint. Then, the consequences of these deletions are
studied thanks to a propagation mechanism that calls the filtering algorithms
of the constraints until no more modification occurs. CP uses also a systematic
search, like a branch-and-bound for instance, but this is not limited to this case,
to find solutions.

In this paper, we aim to contradict some conventional wisdom of Constraint
Programming. It is often considered that CP is not an efficient method to solve
pure combinatorial optimization problems. By ”pure problems”, we mean prob-
lems in which only one kind of constraint is involved.

A clique of a graph G = (X, E) is a subset V of X, such that every two
nodes in V are joined by an edge of E. The maximum clique problem consists
of finding ω(G) the largest cardinality of a clique. Finding a clique of size k is
an NP-Hard problem. This problem is quite important because it appears in a
lot of real world problems. Therefore almost all types of algorithms have been

used to try to solve it. For more information the reader can consult the survey
of Bomze, Budinich, Pardalos and Pelillo [3].

Fahle [7] has proposed to use CP techniques to solve this problem. The results
he obtained were encouraging. Notably, he has been able to close some open
problems. His model uses two constraints: one based on the degree, we will call
it degreeCt, and one based on the search for an upper bound of the size of
a maximum clique, we will call it UBMaxCliqueCt. These two constraints are
defined on the set of nodes that are considered at every moment by the algorithm.
Then a branch-and-bound algorithm is used to traverse the search space.

Fahle’s algorithm tries to construct a clique as large as possible, by succes-
sively selecting a node and studying the candidate set, that is the set of nodes
that can extend the clique currently under construction. After each selection of
node, the filtering algorithms associated with the two constraints are triggered
until no more modification of the candidate set occurs.

The filtering algorithm associated with degreeCT removes all nodes whose
degree is too small to extend the current clique to a clique of size greater than
the current objective value.

The filtering algorithm associated with UBMaxCliqueCt removes all nodes
for which we know that they cannot belong to a clique of size greater than the
current objective value. A non obvious bound is searched by computing an upper
bound of the number of colors needed to color the subgraph induced by a node
and its neighborhood such that two adjacent nodes have different colors.

The drawback of this filtering is the time required to compute such a bound,
and also its systematic use. That is, a priori, we do not know whether the filtering
algorithm will remove some values or not.

In this paper we propose to use another upper bound based on matching
algorithm. The advantage of our method is that we can easily identify some
cases for which the filtering algorithm will remove no value; and so we can avoid
to call it.

Moreover, Fahle uses a common strategy to select the next node that will
extend the current clique under construction. This strategy is based on the degree
of the nodes and selects the one with the smallest value. We propose a different
approach that can be viewed as an adaptation and a generalization of the Bron
& Kerbosh’s [4] ideas for enumerating the maximal cliques of a graph. This
idea leads to a new filtering algorithm based on the study of the nodes that
have already been tried. Our strategy is more complex but tends to find more
quickly the cliques with a large size as it is shown by the results we obtain on
the well-known DIMACS benchmarks.

The paper is organized as follows. First we present, new upper bounds for
the maximum clique problem. Then, we introduce some new properties that
are based on the ideas of the Bron & Kerbosh’s algorithm. The strategy that
exploits the previous ideas is detailed. After, we will give some results. Finally,
we present some ideas about the definition of a maximum clique constraint and
we conclude.

1 Preliminaries

1.1 Graph

A graph G = (X, E) consists of a node set X and an edge set E, where every
edge (u, v) is a pair of distinct nodes. u and v are the endpoints of (u, v). The
complementary graph of a graph G = (X, E) is the graph G = (X, F), where
(x, y) is an edge of G if and only if x 6= y and (x, y) is not an edge of G.

A path from node v1 to node vk in G is a list of nodes [v1, ..., vk] such that
(vi, vi+1) is an edge for i ∈ [1..k − 1]. The path contains node vi for i ∈ [1..k]
and arc (vi, vi+1) for i ∈ [1..k − 1]. The path is a cycle if k > 1 and v1 = vk.
The length of a path p, denoted by length(p), is the number of arc it contains.
Γ (x) is the set of neighbors of x, that is the set of nodes y such that (x, y) ∈ E.

A clique of a graph G = (X, E) is a subset V of X, such that every two nodes
in V are joined by an edge of E. The maximum clique problem consist of
finding ω(G) the largest cardinality of a clique. Given a node x, ω(G, x) denotes
the size of the largest clique containing x.

A independent set of a graph G = (X, E) is a subset S of X, such that every
two nodes in V are not joined by an edge of E. The maximum independent
set problem consist of finding α(G) the largest cardinality of an independent
set.

A vertex cover of a graph G = (X, E) is a subset V of X, such that every
edge of E has an endpoint in V . The minimum vertex cover problem consist
of finding ν(G) the smallest cardinality of a vertex cover.

A matching of a graph G = (X, E) is a subset M of E, such that no two
edges of M have a common node. The maximum matching problem consists
of finding µ(G) the largest cardinality of a matching.

1.2 CP Algorithm for solving maximum clique

Let G = (X,E) be a graph. The idea is to start with a clique C = ∅, called the
current set, and a candidate set equals to X. Then the algorithm successively
selects nodes in the candidate set in order to increase the size of C. When a node
x is added to C, all the nodes that are non adjacent to x are removed from the
candidate set. The candidate set is also used for bounding. Algorithm 1 is a
possible implementation. The algorithm must be called with Current = ∅ ,
Candidate = X and K = ∅, where K is the largest clique found so far. Function
filterAndPropagate returns false when we can prove that there is no clique
whose cardinality is strictly greater than |K| in the subgraph of G induced by
(Current ∪ Candidate); otherwise it returns true. This function also aims to
remove some values of Candidate that cannot belong to a clique of size strictly
greater than |K| and containing Current. The simplest condition to remove a
node y is to check whether |Γ (y) ∩ Candidate|+ |Current| < |K|

Every upper bound for the maximum clique problem is interesting in a CP
approach, because we will use it to check whether a node can belong to a clique
of a given size.

Algorithm 1: Basic Algorithm for searching for a maximum Clique

maximumClique(Current, Candidate, io K)
while Candidate 6= ∅ do

select x in Candidate and remove it
save Candidate
add x to Current
remove from Candidate the nodes y s.t. y 6∈ Γ (x)
if filterAndPropagate(Current, Candidate, K) then

if Candidate = ∅ then K ← Current // solution
else maximumClique(Current, Candidate, K)

remove x from Current
restore Candidate

Property 1 Let G = (X, E) be a graph and x a node, and K be a clique of G.
If ω(G, x) < |K| then ω(G) = ω(G− {x}).

Therefore any upper bound of ω(G, x) can be used to remove some nodes in
the candidate set. A simple bound can be |Γ (x)∩Candidate|+ |Current|. That
is, as proposed by [7], we can remove from the candidate set all the nodes such
that |Γ (x)∩Candidate|+ |Current| < |K|. The deletion of a node modifies the
neighborhood of its neighbors thus it can change the value of the upper bound of
some other nodes, so the process is repeated until no more modifications occurs.
Function filterAndPropagate given by Algorithm 2 implements this idea.

Algorithm 2: Filtering algorithm and propagation

filterAndPropagate(Current, Candidate, io K)
do

continue ← false
for each y in Candidate do

if |Γ (y) ∩ Candidate|+ |Current| < |K| then
remove y from Candidate
if |Candidate|+ |Current| < |K| then return false
continue ← true

while continue
return true

2 Upper bounds for clique

If we find better upper bounds for the size of the maximum clique involving a
node then we will be able to improve function filterAndPropagate and so
to remove more values.

There are some relations between the maximum clique problem, the maxi-
mum independent set, the minimum vertex cover, and the maximum matching:

Property 2 Let G = (X, E) be a graph, then
• ω(G) = α(G)
• α(G) = |X| − ν(G)
• ω(G) = |X| − ν(G)

proof: A maximum clique corresponds to an independent set in the complementary

graph, hence ω(G) = α(G). The subgraph induced by an independent set S does not

contain any edge, thus every edge of G has an endpoint in Y = X − S, therefore Y

is a vertex cover of G. Hence S = X − Y and the largest set S is associated with the

smallest set Y , so α(G) = |X| − ν(G). Then, ω(G) = |X| − ν(G) follows immediately.

Property 3 Let G = (X, E) be a graph, then
ν(G) ≥ µ(G) and the equality holds if G is bipartite.

proof: Let V be any vertex cover of G. All the edges of a matching have no common

nodes, thus at least one endpoint of every edge of the matching must be in V in order

to cover this edge. Therefore ν(G) ≥ µ(G). The proof for the bipartite case can be

found in [2].

From this property and the previous one we immediately deduce the well
known property:

Property 4 ω(G) ≤ |X| − µ(G)

This new upper bound could be used, but it has one drawback: G can be non-
bipartite, and the algorithm to compute a maximum matching in a non-bipartite
graph is complex. Thus we propose to use an original upper bound for ω(G),
which is stronger and much more easy to compute. We need, first, to define the
duplicated graph of a graph (See Figure 1.)

e

a

c

b

d e

a

b

c

d

e

a

b

c

d

e

G Gd projection in G

a

c

b

d

Fig. 1. An example of a duplicated graph of a graph. The bold edges represent the
edges of the matchings. The right graph is the projection of the matching of Gd in G.
G is covered by an edge and a triangle, therefore 1 + 2 nodes are necessary to cover all
the edges and ν(G) ≥ 3.

Definition 1 Let G = (X,E) be a graph. The duplicated graph of G is the
bipartite graph Gd = (X, Y, F), such that Y is a copy of the nodes X, c(u) is the

node of Y corresponding to the node u in X, and there is an edge (u, c(v)) in F
if and only if there is an edge (u, v) in E.

Note that if (u, v) ∈ E then (v, u) ∈ E.

Property 5 µ(Gd) ≥ 2.µ(G) and there exist graphs G with µ(Gd) > 2.µ(G)

proof:From a matching M of G we can create a set M ′ of edges of Gd as follows: for

each edge (u, v) in M we add the edges (u, c(v)) and (v, c(u)) to M ′. M is matching

thus it involves 2.|M | nodes. By construction of M ′ and by definition of Gd, M ′ involves

2.|M | nodes of X and 2.|M | nodes of Y . Therefore M ′ is matching of size 2.|M | and

µ(Gd) ≥ 2.µ(G). A triangle is an example of graph G with µ(Gd) = 3 and µ(G) = 1,

that is µ(Gd) > 2.µ(G) (See also Figure 1.)

We define the projection of a matching of Gd in G:

Definition 2 Let G = (X, E) be a graph and M be a matching of Gd. Let E′ by
the subset of E defined by (u, v) ∈ E′ if and only if either (u, c(v)) or (v, c(u))
belongs to M .
The projection of M in G is the subgraph of G induced by the subset E′ of E.
We will denote it by P (M, G).

Figure 1 contains an example of projection.
We will denote by edges(cc) the edge set of a connected component cc.

Property 6 Let G = (X, E) be a graph, M be a matching in Gd, P (M, G) be
the projection of M in G, and CC be the set of the connected components of
P (M,G). Then

ν(G) ≥
∑

cc∈CC

d |edges(cc)|
2

e

proof: Consider cc a connected component of P (M, G). M is matching, so no node

of P (M, G) can have a degree greater than 2. Therefore, cc is either an isolated node,

or a path, or a cycle. Hence, the number of nodes needed to cover the edges of cc is

d |edges(cc)|
2

e. The connected components are node disjoint therefore the value associ-

ated with each component can be sum, and the property holds.

From this property we can also deduce a simpler property which is weaker
but interesting due to property 5.

Property 7 ν(G) ≥ dµ(Gd)
2 e

proof: Consider a matching M in Gd with M = µ(Gd), P (M, G) the projection of
M in G, and cc a connected component of P (M, G). As mentioned in the proof of
Property 6, cc is either an isolated node, or a path, or a cycle. Let Medges(cc) be the
set of edges (u, c(v)) of M such that (u, v) belongs to cc. If cc is a path containing only

one edge then |Medges(cc)| = 2 and d |edges(cc)|
2

e = d |Medges(cc)|
2

e. In all the other cases

|edges(cc)| = |Medges(cc)|, and so d |edges(cc)|
2

e = d |Medges(cc)|
2

e. Moreover, by defini-
tion of the projection of M , for every edge (u, c(v)) of M there exists a connected com-

ponent cc containing (u, v), then we have
∑

cc∈CC
d |Medges(cc)|

2
e =

∑
cc∈CC

d |edges(cc)|
2

e.

On the other hand
∑d i

2
e ≥ d

∑
i

2
e

thus we have:

∑
cc∈CC

d |edges(cc)|
2

e =
∑

cc∈CC

d |Medges(cc)|
2

e ≥ d
∑

cc∈CC
|Medges(cc)|

2
e ≥ dµ(Gd)

2
e

And from Property 6 we deduce: ν(G) ≥ dµ(Gd)
2

e

Finally, from Property 2 we immediately have the property:

Property 8 ω(G) ≤ |X| − dµ(G
d
)

2 e
We decided to base our filtering algorithm on this property and not on Prop-

erty 6 because with Property 8 we have a good test to know whether it can be
interesting to check it. We just have to check whether |X| − d |X|2 e is lower than
the size of the clique currently computed. From our experiments, thanks to this
test, only 5% of the matching that are computed are useless1.

We have also implemented Property 6 but the gain is really small in term
of eliminated nodes and more time is needed. We would like to stress on this
point. CP involves a propagation mechanism, therefore, and especially for pure
problems, the comparison of two properties is not simple because we have to
take into account the propagation mechanism. Here, we have seen that the use of
Property 8 and propagation gives equivalent result to the use of Property 6 with
propagation, so we can eliminate the use of the second, if, of course, it required
more time to be checked. Moreover, in practice, we can stop the computation of
the maximum matching either when the current size of the matching is enough
to conclude that we cannot find a clique with a largest size of the better found
so far, or when we known that we will not be able to make such a deduction.

On the other hand, in practice there is an important difference between
Property 4 and Property 8. It seems really worthwhile to improve the upper
bound even by a small value, provided that we have an interesting test to avoid
some useless computations.

Function filterAndPropagate can be refined. Algorithm 3 gives its new
code.

There is no need to explicitly create the subgraph in the function it is suf-
ficient to traverse the nodes of Γ (x) ∩ Candidate and the matching can be
computed by considering that an edge exists if two nodes are non adjacent. In
the algorithm, we also apply this new test for the set Candidate when a node is
removed in order to know whether it is useless to continue the search.

3 Introduction of a not set

When enumerating all the maximal cliques of a graph, Bron and Kerbosh [4]
have proposed to use a new set of nodes: a not set denoted by Not. This set
1 More precisely, only 5% of nodes that satisfies this test (that is mark 1 in Algorithm

3) will not be removed by Algorithm 3 (that is by mark 2.)

Algorithm 3: Filtering algorithm and propagation: a new version

filterAndPropagate(Current, Candidate, io K)
do

continue ← false
for each y in Candidate do

N ← |Γ (y) ∩ Candidate|
if N + |Current| < |K| then remove y from Candidate
else

1 if N − dN
2
e+ |Current| < |K| then

Let H be the subgraph of G induced by Γ (x) ∩ Candidate

compute µ(H
d
)

if N − dµ(H
d
)

2
e+ |Current| < |K| then

2 remove y from Candidate

if y 6∈ Candidate then
Let H be the subgraph of G induced by Candidate

compute µ(H
d
)

if |Candidate| − dµ(H
d
)

2
e + |Current| < |K| then return false;

continue ← true

while continue
return true

contains the nodes that have already been studied by the algorithm and that
are linked to all the nodes of the Current set. We propose to adapt their idea
to our case and to generalize it.

In order to clearly understand the meaning of the not set we propose to imme-
diately adapt our algorithm (See Algorithm 4.) Function removeFromNot(x)
removes from Not the element that are not in Γ (x).

The idea of Bron and Kerbosh corresponds to the following property:

Property 9 If there is a node x in Not such that Candidate ⊆ Γ (x) then the
current branch of the search can be abandoned.

proof: all cliques that we can find from the current set and from the candidate set

will be a clique by adding x, therefore these cliques cannot be maximal.

This property can be refined when searching for the size of a maximum clique.
A dominance property can be obtained:

Dominance Property 1 If there is a node x in Not such that |Candidate −
Γ (x)| ≤ 1 then the current branch of the search can be abandoned.

proof: We just have to consider the case Candidate−Γ (x) = {y}. There are two pos-

sible cliques: the cliques that contain y and the cliques that do not contain y. Consider

any clique that does not contain y. In this case, this clique could also be found if y is

removed from Candidate and therefore Property 9 can be applied. Consider any clique

that contains y, then if we replace y by x we also obtain a clique because x is linked

Algorithm 4: Solving the maximum Clique problem: introduction of a not set

maximumClique(Current, Candidate, Not, io K)
while Candidate 6= ∅ do

select x in Candidate and remove it
save Candidate
save Not
add x to Current
remove from Candidate the nodes y s.t. y 6∈ Γ (x)
removeFromNot(x)
if filterAndPropagate(Current, Candidate, Not, K) then

if Candidate = ∅ then K ← Current // solution
else maximumClique(Current, Candidate, K)

restore Not
remove x from Current
add x to Not
restore Candidate

to all the nodes except y, and the size of the clique is unchanged. And, this clique has

already been found when x has been selected, hence we cannot improved the largest

cardinality found so far.

This new property leads to a modification of our algorithm. In the Bron and
Kerbosh’s algorithm a node is removed from Not when the selected node is not
linked to it. In our case, we slightly change this property: instead of removing a
node x in Not when a selected node y is not linked to it, we can mark x if it is
unmarked and remove x if it is already marked. Our property must be changed:

Dominance Property 2 If there is a node x in Not such that x is not marked
and |Candidate− Γ (x)| ≤ 1 then the current branch of the search can be aban-
doned.
If there is a node x in Not such that x is marked and Candidate ⊆ Γ (x) then
the current branch of the search can be abandoned.

Function removeFromNot has to be accordingly modified. From this prop-
erty we can define a new filtering algorithm:

Unfortunately, the cost of checking this property is high. In practice, it is
not worthwhile to use it. We have preferred to use it in a different way. Instead
of searching if the current neighborhood of every node of the candidate set is
included in the neighborhood of every node in Not, we decided to limit our study
to the node of not whose neighborhood contains almost all nodes of candidate.
That is, for every node x of Not we compute the number of nodes of candidates
that are linked to x. If this number is greater than |Candidate| − 2 we can
immediately identify the nodes of the candidate set that must be selected or
that must be removed. The strict application of Dominance Property 2 gives
better results in terms of backtracks (around 10% less) than the restriction we
propose. However, the latter approach is much more easy to implement and more

efficient to compute, because we only need to compare the neighborhood of a
node of Not with the candidate set and not with neighborhood of every node in
the candidate set taken separately.

The final version of our algorithm is given by Algorithm 5.
Function filteringFromNot uses the notion of mark or removes some nodes.

Algorithm 5: Filtering algorithm and propagation taken into account nodes of

the not set
filterAndPropagate(Current, Candidate, io K)
do

do
continue ← false
for each y in Candidate do

N ← |Γ (y) ∩ Candidate|
if N + |Current| < |K| then remove y from Candidate
else

if N − dN
2
e+ |Current| < |K| then

Let H be the subgraph of G induced by Γ (x) ∩ Candidate

compute µ(H
d
)

if N − dµ(H
d
)

2
e + |Current| < |K| then remove y from

Candidate

if y 6∈ Candidate then
Let H be the subgraph of G induced by Candidate

compute µ(H
d
)

if |Candidate| − dµ(H
d
)

2
e + |Current| < |K| then return

false; continue ← true

while continue
if continue then

continue ← FilteringFromNot(Not, Candidate)

while continue
return true

4 A new search strategy

As it has been shown by Bron and Kerbosh to enumerate the maximal cliques
of a graph, it is interesting to select node such that Property 9 can be applied
as soon as possible.

This means that when a node is added to Not, we identify first the node x
in Not which has the largest number of neighbors in the candidate set. Then,
we select for next node, a node y such that y is not linked to x

We have used exactly the same idea by considering in Not only the unmarked
nodes. The ties have been broken by selecting the node y with the fewest number

of neighbors in the candidate set, in order to have more chance to remove quickly
y and then to be able to apply successfully Dominance Property 2.

When a node has not been removed, that is when the latest selection is suc-
cessful; we select the node with the largest number of neighbors in the candidate
set. This approach gives a better chance to find quickly cliques whose cardinality
is huge. This is important for our approach because our filtering algorithm takes
into account the size of the clique found so far.

4.1 Diving technique

This technique is often used in conjunction with a MIP approach. It consists
of searching whether of solution exists for every value of every variable. Each
search for a solution is not complete. In other words, a greedy algorithm is used
(that is no backtrack is allowed). Then, the new objective value is the best
objective value found so far. The advantages of this approach is triple: its cost
is low because the algorithm is polynomial, the minimum of the objective value
can be improved, and an objective value can be quickly found whereas a depth
first search strategy will need a lot of time to find it. In fact, a systematic search
spends a lot of time to proved the local optimality of the current objective value;
this proof is abandoned when a better value is found.

In our program, this technique is used after 10 minutes of computations. That
is, we stop the current search, we apply the diving technique and the initial search
continues with the objective value returned by the diving technique, which can
be improved or not.

5 Experiments

We have used ILOG Solver to implement our algorithm and the well known
DIMACS benchmark set for our tests [6].

All our experiments have been made on a Pentium IV mobile at 2Ghz with
512 Mo of memory.

The experiments have been stopped after 4 hours (that is 14,400 s) of com-
putation, except for p hat1000-2 because we saw after 14,400 s that the problem
should be solved. In this case, 16,845 s are needed to close the problem.

The results are given in table entitled ”Dimacs clique benchmarks”.
All the problems having 400 nodes or less are solved. Notably, for the first

time the brock400 series is now solved. Only, johnson32-2-4, prevent us from
solving all the problems having 500 nodes or less.

All san series or sanr series are now solved.
7 problems have been closed for the first time: all the brock400 series, p hat500-

3, p hat1000-2 and sanr200 0.9, which is solved in 150 s.
Two results are particularly remarkable: p hat300-3 is solved in 40s, instead

of 850s; and p hat700-2 is solved in 255s instead of 2,086s.
Two lower bounds of the remaining open problems MANN a45 (the optimal

value is reached) and MANN a81 have been improved.

DIMACS CLIQUE BENCHMARKS
Wood Östegard Fahle ILOG Solver

Name |K| |K| #select time |K| time |K| #select time |K| #select time
brock200 1 21 21 379,810 53.68 21 18.10 21 66,042 92.97 21 93,795 10.72
brock200 2 12 12 2,594 0.26 12 0 12 437 0.31 12 2,185 0.29
brock200 3 15 15 24,113 2.57 15 0.15 15 2,332 2.23 15 7,821 0.86
brock200 4 17 17 52,332 6.20 17 0.33 17 8,779 8.18 17 23,037 2.13
brock400 1 27 fail fail ≥ 24 fail 27 60,159,630 11,340.8
brock400 2 29 fail fail ≥ 29 fail 29 36,843,872 7,910.6
brock400 3 31 fail fail ≥ 24 fail 31 19,616,188 4,477.23
brock400 4 33 fail fail ≥ 25 fail 33 32,457,068 6,051.77
brock800 1 23 fail fail ≥ 21 fail ≥ 21 fail
brock800 2 24 fail fail ≥ 20 fail ≥ 20 fail
brock800 3 25 fail fail ≥ 20 fail ≥ 20 fail
brock800 4 26 fail fail ≥ 20 fail ≥ 20 fail
c-fat200-1 12 12 8 0 12 0 12 5 0 12 3 0
c-fat200-2 24 24 7 0 24 0 24 5 0 24 3 0
c-fat200-5 58 58 27 0 58 2.6 58 5 0 58 3 0
c-fat500-1 14 14 13 0 14 0.02 14 3 0 14 3 0
c-fat500-10 126 126 1 0 126 0.02 126 5 0.02 126 3 0.04
c-fat500-2 26 26 23 0 26 0.03 26 5 0 26 3 0
c-fat500-5 64 64 23 0 64 3,480.21 64 5 0.02 64 3 0
hamming10-2 512 512 1 0 512 0.84 512 257 5.16 512 257 1.04
hamming10-4 ≥ 40 fail fail ≥ 32 fail ≥ 40 fail
hamming6-2 32 32 1 0 32 0 32 17 0 32 17 0
hamming6-4 4 4 81 0 4 0 4 31 0 4 42 0
hamming8-2 128 128 1 0 128 0 128 65 0.07 128 65 0
hamming8-4 16 16 36,441 5.28 16 0.28 16 1,950 6.11 16 40,078 4.19
johnson16-2-4 8 8 256,099 13.05 8 0.09 8 126,460 7.91 8 250,505 3.80
johnson32-2-4 ≥ 16 fail fail ≥ 16 fail ≥ 16 fail
johnson8-2-4 4 4 23 0 4 0 4 15 0 4 14 0
johnson8-4-4 14 14 115 0 14 0 14 39 0.03 14 140 0
keller4 11 11 12,829 1.23 11 0.17 11 1,771 2.53 11 7,871 0.5
keller5 27 fail fail ≥ 25 fail ≥ 27 fail
keller6 ≥ 59 fail fail ≥ 43 fail ≥ 54 fail
MANN a9 16 16 60 0 16 0 16 31 0 16 50 0
MANN a27 126 126 47,264 46.95 fail 126 39,351 10,348.87 126 1,258,768 18.48
MANN a45 345 fail fail ≥ 331 fail ≥ 345 fail
MANN a81 ≥1100 fail fail ≥ 996 fail ≥ 1100 fail
p hat300-1 8 8 1,310 0.10 8 0 8 254 0.07 8 364 0.11
p hat300-2 25 25 2,801 0.67 25 0.33 25 1,121 3.01 25 1,695 0.59
p hat300-3 36 fail fail 36 171,086 856.67 36 102,053 40.71
p hat500-1 9 9 9.772 0.91 9 0.1 9 690 0.6 9 8,731 2.30
p hat500-2 36 36 59,393 17.81 36 142.93 36 32,413 203.93 36 41,259 32.69
p hat500-3 50 fail fail ≥ 48 fail 50 10,986,526 12,744.7
p hat700-1 11 11 25,805 2.69 11 0.22 11 2,195 2.67 11 25,653 6.01
p hat700-2 44 fail fail 44 188,823 2,086.63 44 259,775 255.79
p hat700-3 ≥ 62 fail fail ≥ 54 fail ≥ 62 fail
p hat1000-1 10 10 179,082 18.88 10 1.95 10 19,430 16.43 10 69,582 27.80
p hat1000-2 46 fail fail ≥ 44 fail 46 14,735,370 16,845.7
p hat1000-3 ≥ 68 fail fail ≥ 50 fail ≥ 66 fail
p hat1500-1 12 fail fail 12 136,620 119.77 12 1,063,765 480.84
p hat1500-2 ≥ 65 fail fail ≥ 52 fail ≥ 63 fail
p hat1500-3 ≥ 94 fail fail ≥ 56 fail ≥ 91 fail
san1000 15 15 106,823 43.59 15 0.17 15 35,189 3044.09 15 256,529 102.80
san200 0.7 1 30 30 206 0.06 30 0.19 30 301 1.57 30 1,310 0.36
san200 0.7 2 18 18 195 0.03 18 0 18 394 0.66 18 3,824 0.37
san200 0.9 1 70 70 2,069 0.77 70 0.09 70 20,239 62.61 70 1,040 1.04
san200 0.9 2 60 60 211,889 70.13 60 1.43 60 309,378 1930.90 60 6,638 2.62
san200 0.9 3 44 fail fail 44 32,327 194.96 44 758,545 182.70
san400 0.5 1 13 13 3,465 0.75 13 0 13 882 6.74 13 6,204 1.19
san400 0.7 1 40 40 38,989 13.25 fail 40 11,830 425.99 40 70,601 23.28
san400 0.7 2 30 30 1,591,030 415.12 30 168.7 30 26,818 159.72 30 249,836 67.53
san400 0.7 3 22 fail fail 22 213,195 617.07 22 1,690,023 273.23
san400 0.9 1 100 fail fail 100 291,195 7,219.53 100 984,133 1,700
sanr200 0.7 18 150,861 22.50 18 4.7 18 25,582 24.99 18 41,773 4.30
sanr200 0.9 fail fail ≥ 41 fail 42 541,496 150.08
sanr400 0.5 13 233,381 22.55 13 2.21 13 32,883 23.09 13 164,276 17.12
sanr400 0.7 fail fail 21 9,759,158 15,925 21 22,791,798 3,139.11

Our program reaches the best lower bounds found so far for 6 problems:
p hat700-3, johnson32-2-4, hamming10-4, keller5 (the optimal value is reached),
MANN a45 (the optimal value is reached), and MANN a81.

Better lower bounds have been found by [1] for p hat1500-2 (65) , and
p hat1500-3 (94); and by [8] for keller6 (59) and p hat1000-3 (68).

We think that this method is not the good one to solve some problems:
keller6, johnson32-2-4, hamming10-4. For the other open problems, we are more
confident.

5.1 Comparison with complete methods

We compare our approach with 3 other algorithms:
• [11]: A branch-and-bound approach using fractionnal coloring and lower bound
heuristic.
• [9]: this approach is similar to dynamic programming: solve the problem with
one node, then with 2 nodes, and so on until reaching n. Each time the optimal
value of the previous computations is used as a minimal value for the new prob-
lem.
• [7]: This is the first CP approach. Fahle proposes to consider two filtering: the
first one consists of removing the nodes that have a degree which is too small to
improve the current objective value, the second consists of computing an upper
bound of the clique involving each vertex taken separately by using a well known
heuristic algorithm for graph coloring. The strategy selects the node with the
smallest degree.

We decided to use a normalization of the time of the other approaches, instead
of re-program the algorithm, because we were able to compare the performance
of our algorithm on several machines and then to obtain a time ratio that should
be fair. Therefore we have used the following time ratio:
• The times given by Wood are divided by 15
• The times given by Östegard are divided by 3
• The times given by Fahle are divided by 1.5

We can resume the comparison with other complete method by the following
table:

Wood Östegard Fahle ILOG Solver
number of solved problems 38 36 45 52
number of problems solved 38 35 38 44
in less than 10 min.
number of best time 15 26 10 30
number of best lower bound 0 0 1 5
for open problems

If we consider all the problems solved by Östegard in less than 10 minutes,
then Östegard needs 345.88s for solving all these problems, whereas we need
only 282.44s

Our approach is almost always better than the Fahle’s one, only p hat1500-1
is quickly solved by the Fahle’s method.

5.2 Comparison with heuristic methods

Two heuristic methods give very interesting results for solving the maximum
clique problem: QUALEX-MS [5] and the method proposed in [10].

For the set of benchmarks we consider, these two methods are able to reach
the best bound known so far for 50 problems. In less than 1 minute QUALEX-MS
found 48 best bounds.

Here are the results we obtain with our approach:

– Within a limit of 4 hours of computation, our method is able to reach the
best bound for 58 problems (and for 52 the optimality is proved).

– In less than 10 minutes of computation, we are able to find 49 best bounds,
whose 44 are proved to be optimal.

– Within a limit of 1 minute of computation, we can reach 41 best bounds,
and prove that 37 are optimal.

These results show that our method is competitive in regards to the best
heuristic methods, even when the computational time is limited.

5.3 Interest of the diving technique

The diving technique is used after 10 minutes of computations. This technique
requires most of the time less than 10 s, except for some huge problems where
100 s are needed and for keller6 which needs one and half hour.

It improves the current objective value |K| found so far by the search, for 4
problems:
• brock400 2: the current value is 24, and the diving technique gives 29. From
this information the search is speed-up. Without the diving technique we need
9,163 s to solve the problem, whereas with it, we need only 7,910 s.
• keller6: the current value is 51, and the diving technique gives 54. This result
is interesting because after 4 hours of computation the solver is not able to
improve 51. Therefore the diving technique in itself gives a better result. This
result cannot be improved in 4 hours of computation.
• p hat1500-3: the current value is 89, and the diving technique gives 91. This
value cannot be improved by further computations within the limit of 4 hours.
• san400 0.9 1: the current value is 92. The diving technique gives 100 which
is the optimal value. With the diving technique 1,700 s are needed to solve the
problem, instead of 2,900 s.

6 A Maximum clique constraint

We can imagine to have a constraint stating the a set of nodes of a graph must be
a clique of size greater than a given integer K. For instance, this set of nodes can
be represented by a set variable as presented in ILOG Solver. Then, the filtering
algorithm associated with this constraint will aim to remove some values of this
set variable. The current set will then be defined by the required elements of the
set variable. Moreover, then a node will be required all its non-neighboor will be
removed from the possible set. In this case Algorithm 3 can be used as a filtering
algorithm.

Moreover, a Not set could also be used. For instance, it could be given at
the definition, and the growing of this set could be managed. We can define
a filtering algorithm involving this set by using Property 9. The dominance
properties cannot be used because some solutions could be missed.

7 Conclusion

In this paper we have presented a CP approach to solve a famous combinatorial
optimization problem. We have presented new upper bound for the maximum
clique problem and adapted and generalized the ideas of Bron and Kerbosh to
this problem. The results that we obtain are good: seven problems are closed
and 2 lower bounds have been improved for problems remaining open. We have
also discussed the possible definition of a maximum clique constraint and its
association with a filtering algorithm based on the ones presented in this paper.
We hope that our ideas will lead to new improvements of the CP approach. In
order, to encourage these improvements we claim that our approach is, currently,
one of the best methods to solve the Maximum Clique Problem.

References

1. E. Balas and W. Niehaus. Finding large cliques in arbitrary graphs by bipar-
tite matching. In D. Johnson and M. Trick, editors, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 26, pages 29–52. American
Mathematical Society, 1996.

2. C. Berge. Graphe et Hypergraphes. Dunod, Paris, 1970.
3. I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem.

Handbook of Combinatorial Optimization, 4, 1999.
4. C. Bron and J. Kerbosh. Algorithm 457 : Finding all cliques of an undirected

graph. Communications of the ACM, 16(9):575–577, 1973.
5. S. Busygin. A new trust region technique for the maximum weight clique prob-

lem. Submitted to Special Issue of Discrete Applied Mathematics: Combinatorial
Optimization, 2002.

6. Dimacs. Dimacs clique benchmark instances.
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique, 1993.

7. Torsten Fahle. Simple and fast: Improving a branch-and-bound algorithm for max-
imum clique. In R. Möring and R. Raman, editors, ESA 2002, 10th Annual Euro-
pean Symposium, pages 485–498, 2002.

8. S. Homer and M. Peinado. Experiements with polynomial-time clique approxi-
mation algorithms on very large graphs. In D. Johnson and M. Trick, editors,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol-
ume 26, pages 147–168. American Mathematical Society, 1996.

9. P Östegard. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, page to appear.

10. P. St-Louis, B. Gendron, and J. Ferland. A penalty-evaporation heuristic in a
decomposition method for the maximum clique problem. In Optimization Days,
Montreal, Canada, 2003.

11. D. Wood. An algorithm for finding maximum clique in a graph. Operations Re-
search Letters, 21:211–217, 1997.

